Analytic Combinatorics Exercise Sheet 1

Exercises for the session on 20/3/2017

Problem 1.1

Show

$$
\left[z^{n}\right]\left(\frac{1-\sqrt{1-4 z}}{2}\right)=\frac{1}{n}\binom{2 n-2}{n-1}
$$

(use the generalised binomial theorem $(1+x)^{\alpha}=\sum_{k \geq 0}\binom{\alpha}{k} x^{k}$, where

$$
\left.\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}\right)
$$

and derive an asymptotic formula for

$$
\frac{1}{n}\binom{2 n-2}{n-1}
$$

(use Stirling's formula $n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$).

Problem 1.2

This question concerns the number of ways a string of n identical letters, say x, can be 'bracketed'. The rule is best stated recursively: x itself is a bracketing and if $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ with $k \geq 2$ are bracketed expressions, then the k-ary product $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k}\right)$ is a bracketing. For instance: $(((x x) x(x x x))((x x)(x x) x))$.

Let \mathcal{S} denote the class of all bracketings, where size is taken to be the number of instances of x, and let $S(z)$ denote the ordinary generating function for \mathcal{S}.

Show

$$
S(z)=\frac{1}{4}\left(1+z-\sqrt{1-6 z+z^{2}}\right)
$$

(remember to justify why we choose the negative root here).

Problem 1.3

Let $T_{n}^{\{0, r\}}$ denote the number of rooted plane r-ary trees on n vertices. Find $T_{n}^{\{0, r\}}$ (use Lagrange's Inversion Theorem) and show

$$
T_{2 n+1}^{\{0,2\}} \sim \frac{4^{n}}{\sqrt{\pi n^{3}}} .
$$

Problem 1.4

Let $A(z)=\sum_{n \geq 0} A_{n} z^{n}$ denote the ordinary generating function for the Fibonacci numbers (defined by $A_{0}=A_{1}=1$ and $A_{n+2}=A_{n+1}+A_{n}$ for $n \geq 0$). Show

$$
A(z)=\frac{1}{1-z-z^{2}}
$$

and hence show

$$
A_{n} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}
$$

(use partial fractions).

Problem 1.5

Let $A_{n}=\alpha n+\beta$ for all $n \geq 0$. Find the ordinary generating function $A(z)=$ $\sum_{n \geq 0} A_{n} z^{n}$.

Problem 1.6

Find the ordinary generating function $A(z)=\sum_{n \geq 0} A_{n} z^{n}$, where A_{n} denotes the number of integers between 0 and $10^{m}-1$ whose digits sum to n.

